
Luigi Nardi, Ph.D.
Founder & CEO, DBtune

Réglage automatisé de PostgreSQL :
Explorer l'optimisation des paramètres serveur

A 5-year long journey

PG Day France
June 4, 2024

About me @luinardi

B.Sc and M.Sc. Computer Engineering at La Sapienza — Rome (Italy)

Ph.D. Computer Science at Université Pierre et Marie Curie — Paris (France)2007

Software Engineer at Murex SAS — Paris (France)2011

Postdoc Imperial College London (UK)2014

Research Staff at Stanford University (USA)2017

Assistant Professor in AI/ML at Lund University (Sweden) 2019

M.Sc. thesis at LAAS-CNRS — Toulouse (France)2006

Founder & CEO at DBtune — Malmö (Sweden)2021

2

Associate Professor in AI/ML at Lund University (Sweden) 2024

DBtune is an AI-powered PostgreSQL server

parameter tuning service.

Spun out of research at Stanford University,

DBtune autonomously optimizes the configuration

of databases through machine learning.

It observes, iterates and adapts until converging

and delivering the optimal server configuration for

any individual workload, use case and machine.

About DBtune

3

4
https://speakerdeck.com/clairegiordano/whats-in-a-postgres-major-release-an-
analysis-of-contributions-in-the-v17-timeframe-claire-giordano-pgconf-eu-2024

DBtune in the top 20 PostgreSQL sponsors

Malmö PostgreSQL User Group (M-PUG)

5

• The group is officially recognized by PostgreSQL Europe
• Regular meetups every 4-8 weeks in Malmö — Top speakers
• We are building a vibrant PostgreSQL community in the region

Outline

6

How do we solve this today?
Machine learning tuning automation, a.k.a. AI agents for PostgreSQL
Safety in autotuning
Same examples of autotuning at DBtune

Introduction on PostgreSQL server parameter tuning
Quantitative examples

Conclusions, user psychology and crossing the chasm

What is database tuning?
And how can it help us deliver against strategic objectives

7

What is database tuning?
Keeping the database fit and responsive

Databases change, grow and slow down

8

Tuning adapts a database to its current use-case, load and machine

It is a ‘dark-art’ yet an integral part of any DBA and developer’s job

Tuning includes query, server parameters*, index, OS parameters, etc.

Not all workloads and machines are the same

*We focuse solely on automating PostgreSQL server parameter tuning

Why does it matter?

9

• Impacts system performance

•Throughput and latency
• Improves scalability / stability / SLA

Technical perspective
• Decreases infrastructure spend
• Higher end-user satisfaction
• Reduces downtime

• Increases productivity
• Saves energy (ESG)

Business perspective

PostgreSQL server parameter tuning

10

Adjusting knobs to best fit the workload

Example max_parallel_workers_per_gather:
Max # of workers started by a Gather or Gather Merge node

These parameters highly depend on the application

PostgreSQL parameters that are typically important:
work_mem, shared_buffers, max_wal_size, etc.

Example random_page_cost:
Planner's cost of a non-sequentially fetched disk page

11

Average query runtime tuning
for max_parallel_workers_per_gather and random_page_cost

Epinions

max_parallel_workers_per_gather

ran
do

m_
pa

ge
_c
os
t

4.5
3.5
2.5
1.5
0.5

8

4

2

1

Query runtime in ms
Lower the better

TPC-H

ran
do

m_
pa

ge
_c
os
t

max_parallel_workers_per_gather

4.5
3.5
2.5
1.5
0.5

12000

6000

3000

1500
4 2 1 04 2 1 0

12

Complexity is growing over time
The number of parameters

is growing linearly

2.5x in
 18 yea

rs

PostgreSQL number of parameters

The number of configurations
is growing exponentially

Example of complexity with 12 parameters

How is parameter tuning tackled today by DBAs and developers?

13

Manual

Slow
Takes days
Painstaking
Needs high expertise
Ineffective
Tune again in a week
Inadequate
Seasonal workload

Heuristics

One-size-fits-all
Uses generic rules
Workload agnostic
Not bespoke
Ineffective
Tune again in a week
Inadequate
Seasonal workload

New approach
Ideally a solution
that learns by
observation and
autotunes
A solution that
adapts to changing
workloads

Tuning
guru

Heuristic-based server parameter tuning

14

Heuristics

One-size-fits-all
Uses generic rules
Workload agnostic
Not bespoke
Ineffective
Tune again in a week
Inadequate
Seasonal workload

How often do you tune?

15

Your workload changes — Change queries and application
Frequent

You scale your cloud instance — Up or down
Your database grows and changes

You migrate DBMS — E.g., from Oracle to PostgreSQL
You upgrade your version of PostgreSQL

You migrate from on-prem to the cloud — Or vice-versa
Infrequent

The reality of how most enterprises treat manual parameter tuning today

16

Tuning is typically reactive to something going wrong — Not proactive

Different workloads are not treated differently

Modus operandi: Throw more hardware / compute at any issue ($$$)

Often engage expensive external resources / experts

Desiderata for PostgreSQL autotuning

Agent that learns to solve workload-specific optimization challenges

Autotune a PostgreSQL instance irrespective of size and complexity

Ideally, no need for background in ML or PostgreSQL tuning

Dynamic adaptation

Machine learning approach

Easy to use

17

Scaleable Tune multiple databases in heterogeneous environments

User value propositions

18

☀
Reduce cloud /
infrastructure costs

Make your service
radically faster Free up your DBAs Reduce energy

consumption

PostgreSQL Optimizer-as-a-Service (OaaS)
High-level architecture view for self-managed PostgreSQL

19

AI module

ML optimizer

Optimizer instance

Actuator

Monitor

Open-source
agent

Prior
learnings

Self-hosted
PostgreSQL

OaaS

User’s
PostgreSQL instance

Actuator

Monitor

Open-source
agent

User’s
RDS instance

20

Amazon
Cloud
Watch AWS

API

Connecting services

AI module

ML optimizer

Optimizer instance

Prior
learnings

Amazon RDS

Autotuning architecture for Database as a Service (DBaaS) (2)
High-level view RDS PostgreSQL/Aurora

OaaS

Actuator

Monitor

Open-source
agent

User’s Flexible
Server instance

21

Connecting services

AI module

ML optimizer Prior
learnings

Azure Flexible Server

Autotuning architecture for Database as a Service (DBaaS) (3)
High-level view Azure Flexible Server

Azure
CLI

OaaS

Optimizer instance

Actuator

Monitor

Open-source
agent

22

AI module

ML optimizer Prior
learnings

Self-hosted
PostgreSQL Container

User’s
PostgreSQL instance

Autotuning architecture for instances that are offline (4)
High-level view

Virtual Private Network (VPN)

Optimizer image

23

Constrained optimization
Parameters have safe upper / lower limits in place

Memory monitoring guardrail
Real-time system memory monitoring to revert from potentially unsafe configurations
E.g. configuration that uses too much RAM — Triggered at 90% of RAM

Performance degradation early exit condition
Optimization space may result in configuration with worse performance than the user default
This triggers early exit from existing configuration and move to next iteration

Safe tuning in production environments
System guardrails to avoid unsafe configurations

ML optimizer

24

Safe tuning in production environments (2)
System guardrails to avoid unsafe configurations

When the guardrails are triggered a safety model is trained
This model learns feasibility constraints

ML optimizer

Optimizer model

Safety model

Prior
optimization
learnings

Prior
constraints

=
More precisely

25

Performance tuning results
Doubling the performance of PostgreSQL Amazon RDS

Performance impact of tuning RDS m5.2xLarge cloud instance on the TPC-C benchmark

RDS m5.4xL baseline

RDS m5.2xL baseline

RDS m5.2xL with PGTune

RDS m5.2xL with DBtune

Number of tuning iterations (time)

Pe
rfo

rm
an
ce
 in
 tr
an
sa
cti

on
s /
 se

c 2100

1900

1700

1500

1300

1100

900

700
1 11 21

On the smaller instance
type it can achieve a
level performance
in excess of that
achieved by an

instance twice the size

Proof of cost reduction: Detailed cost analysis
Doubling the performance of PostgreSQL Amazon RDS

26

Hardware Cost / Year
AWS RDS

Instance Type Cores RAM IOPS Instance EBS Total

db.m5.4xlarge 8 64 GBs 4000 $12,475 $4,800 $17,275

db.m5.2xlarge 4 32 GBs 2000 $6,237 $2,400 $8,637

Per instance savings: $8,638
It halves RDS cost (50% saving)
Matches 4xLarge performance on a 2xLarge instance
Medium and large companies use hundreds* of RDS instances

*A16z article: "The Cost of Cloud, a Trillion Dollar Paradox"

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

27

Example of PostgreSQL parameters tuned by DBtune

work_mem
Database reload (11 params)

max_parallel_workers_per_gather

bgwriter_lru_maxpages
random_page_cost

effective_io_concurrency

max_parallel_workers

checkpoint_completion_taget

sequential_page_cost

max_wal_size
min_wal_size

bgwriter_delay

shared_buffers
max_worker_processes

Require database restarts (2 params)

shared_buffers = 25%
max_worker_processes ~ vCPU

Alternatively: 1 restart during
maintenance with heuristic defaults

http://docs.dbtune.com/Supported%20databases/PostgreSQL

There is an on-going shared_buffers patch to
make it dynamically adjustable (see hackers’ list)

28

Performance downside of non-restart (reload-only) strategy
Average query runtime

Default PostgreSQL configuration & no autotuning

shared_buffers=25% & reload-only & autotuning

Restarts allowed & autotuning

ResourceStresser TPC-H Epinions

29

Limitations and notes on AI agent PostgreSQL tuning

On autotuning cloud provider DBaaS
Cloud provider APIs need to be comprehensive and flexible

Model Context Protocol (MCP)
MCP could help other agents to interact with the tuning agent in an agentic world

Performance improvements are somewhat ill-defined
Agreement between the user and the agent on what to optimize (workload fingerprint)

Restarts vs reloads
shared_buffers will be dynamic soon in future PG releases (see hackers mailing list)
No sign of changes for max_worker_processes so far

30

User psychology and society readiness level for PostgreSQL agents

The system described in this presentation is similar to a Waymo car
It takes you autonomously from A to B: "Waymo take me from Palo Alto to Menlo Park"

Debate-style discussion on autotuning at PGDay Lowlands on Sep 12

Would you put your PG production system in the hands of a software agent?
- Waymo took ~15 years
- Genetic Query Optimization (GEQO)  
is an example in PostgreSQL
- Technology adoption life cycle

luigi@dbtune.com

• Useful links: DBtune synthetic workload tutorial GitHub and video

Questions and additional resources

• Demo on how DBtune works

• Blog: DBtune and HammerDB: Your guide to fair PostgreSQL benchmarking

• Blog: From good to great: AI-powered Aiven for PostgreSQL server tuning (demo)

• Panel at PGConf India on the AI revolution in PostgreSQL

http://github.com/dbtuneai/synthetic_workload
https://www.youtube.com/watch?v=ZnfAw05sxLk&ab_channel=DBtune
https://www.youtube.com/watch?v=qehRg5HXqms&ab_channel=DBtune
https://www.dbtune.com/blog/dbtune-and-hammerdb
https://www.dbtune.com/blog/ai-powered-aiven-for-postgresql-server-tuning
https://www.youtube.com/watch?si=FyxrBiz0wfxMbz0Q&v=AAjDYO0Zw74&feature=youtu.be
https://www.youtube.com/watch?v=Ssm17vZz6Rg&ab_channel=PGConfIndia

